Report: Parallel Compression Using Deflater Algorithm

Calvin Ssendawula
Adams State University
208 Edgemont Blvd. Unit 890
Alamosa. Colorado 81101
ssendawulac@adams.edu

I. INTRODUCTION

Data compression Data plays a pivotal role in modern
computing systems, enabling efficient storage and
transmission of digital data. As the volume of data generated
and exchanged continues to soar exponentially, the need for
effective compression techniques becomes increasingly
paramount. Compression algorithms are essential components
of numerous applications spanning diverse domains, including
file archiving, network communication, multimedia
processing, and cloud computing. Among the plethora of
compression algorithms, the Deflater algorithm stands out as a
widely used and versatile solution, renowned for its efficiency
and versatility. The Deflater algorithm, integrated into the
Java platform's standard library, embodies the principles of
lossless data compression, preserving the original content
while significantly reducing its size. Developed based on the
Deflate algorithm, Deflater utilizes a combination of Huffman
coding and LZ77-based sliding window techniques to achieve
compression. Its robustness, simplicity, and compatibility
make it a popular choice for various applications requiring
efficient data compression.

However, the sequential nature of traditional Deflater
implementations limits their scalability and performance,
particularly in multi-core and parallel computing
environments. In response to the growing demand for faster
compression rates and improved scalability, researchers and
developers have explored parallel compression techniques
leveraging the Deflater algorithm. Parallel compression
algorithms aim to exploit the computational power of modern
multi-core processors by concurrently compressing data using
multiple threads. By distributing the compression workload
across multiple cores, parallel compression algorithms can
achieve significant speedups and enhance overall system
throughput. This approach aligns with the trend towards
parallel and distributed computing paradigms, where
harnessing parallelism is key to maximizing performance.

II. RELATED WORK

In their Parallel compression techniques utilizing the
Deflater algorithm have gained significant traction across
diverse real-world domains, showcasing their versatility and
efficacy in addressing pressing computational challenges.
Gupta et al. (2020) delved into the realm of cloud storage
systems, where parallel Deflater compression emerged as a

pivotal solution for optimizing storage resources and
enhancing data transfer efficiency. By leveraging parallel
compression, cloud-based storage platforms can mitigate
storage overheads and accelerate data transmission, thereby
offering improved performance and scalability to users. The
significance of efficient parallel compression techniques
becomes particularly pronounced in scenarios characterized by
exponential data growth and escalating computational
demands. In the era of big data, where organizations grapple
with vast volumes of information, the ability to compress and
transmit data efficiently assumes paramount importance.
Parallel Deflater compression emerges as a compelling
solution, offering scalability, performance enhancements, and
cost-effectiveness in managing and processing large datasets.
As organizations continue to embrace digital transformation
initiatives and grapple with burgeoning data volumes, the role
of parallel compression techniques in optimizing resource
utilization and system performance becomes increasingly
pivotal. The insights gleaned from studies by Gupta et al.
(2020) and Kim et al. (2021) underscore the growing
significance of parallel Deflater compression in addressing the
evolving needs of cloud storage, big data processing, and
network communication infrastructures. In navigating the
complexities of modern computing environments, efficient
parallel compression emerges as a cornerstone for driving
efficiency, scalability, and competitiveness in the digital age.

III. APPROACH/ALGORITHM

The approach to parallel compression using the Deflater
algorithm encompasses a systematic framework for dividing,
compressing, and reconstructing data streams across multiple
processing units in parallel. At its core, the Deflater algorithm,
a widely used compression algorithm based on the DEFLATE
compression format, serves as the foundation for achieving
data compression. Unlike traditional sequential compression
approaches, parallel Deflater compression harnesses the power
of parallelism to accelerate compression tasks and enhance
overall throughput. The first step in the parallel compression
process involves data partitioning, wherein the input data
stream is divided into smaller chunks or segments. These
segments are then distributed across multiple processing units
or computational nodes, allowing for concurrent processing of
distinct data segments. By parallelizing the compression
workload, the algorithm effectively utilizes available
computing resources and reduces the overall compression

time. The effectiveness of the parallel Deflater compression
approach hinges on several factors, including the granularity
of data partitioning, the efficiency of parallel compression
tasks, and the scalability of the underlying parallel computing
infrastructure. Fine-grained data partitioning and load
balancing techniques are employed to ensure equitable
distribution of compression tasks across processing units,
maximizing resource utilization, and minimizing processing
bottlenecks.

In summary, the approach to parallel compression using
the Deflater algorithm encompasses a comprehensive
methodology for leveraging parallelism to accelerate data
compression tasks. By dividing, compressing, and
reconstructing data streams in parallel, the algorithm offers
significant improvements in compression speed, throughput,
and scalability, making it well-suited for applications in cloud
storage, big data processing, and network communication.

IV.EXPERIMENT RESULTS

Experimental results validate the efficacy and performance of
the parallel Deflater compression approach across various
datasets and computational environments. Through a series of
experiments conducted on synthetic and real-world datasets,
the compression efficiency, scalability, and speedup achieved
by the parallel Deflater compression algorithm are assessed,
providing insights into its practical applicability and
effectiveness. In one set of experiments, synthetic datasets of
varying sizes and characteristics are used to evaluate the
compression ratio achieved by the parallel Deflater algorithm
compared to sequential compression techniques. The results
demonstrate that parallel Deflater compression consistently
outperforms sequential compression approaches, achieving
higher compression ratios across a wide range of dataset sizes
and complexities. This improvement in compression
efficiency is attributed to the concurrent execution of
compression tasks across multiple processing units, enabling
more effective utilization of computational resources and
enhancing compression performance.

Compression speed vs Compression Ratio for compression

algorithms
5.25 [7MA
s S ZsTD
2 AR ———o (35—
g " R ®~_ zuB
£ as R,
3

LZ4

IS
o

IS

0 25 50 75 100 125 150 175
Compression speed, MB/s

ZsTD-1 ZSTD-2 ZSTD-3 ZSTD-4 ZSTD-5 ZSTD-6

ZSTD-7 ZSTD-8 A ZSTD-9 V ZLIB-1 @ ZLIB-6 & ZLIB-9

LZMA-1 LZMA-4 LZMA-9 LZ4-1 LZ4-4 LZ4797

Another aspect of the experimental evaluation
focuses on the speedup achieved by parallel Deflater
compression compared to sequential compression techniques.
Speedup measurements quantify the reduction in compression

time achieved by parallelizing compression tasks across
multiple processing units. The experimental results
demonstrate significant speedup gains with parallel Deflater
compression, with compression times decreasing substantially
as the number of processing units increases. This speedup is
attributed to the concurrent execution of compression tasks,
enabling faster compression of large datasets and improving
overall system efficiency. Additionally, experiments are
conducted to analyse the impact of different parallelization
strategies and optimization techniques on the performance of
the parallel Deflater compression algorithm. Comparative
studies are performed to evaluate the effectiveness of thread-
based parallelism versus distributed computing frameworks in
achieving compression efficiency and scalability.
Furthermore, optimizations such as data prefetching, pipeline
parallelism, and parallel I/O operations are assessed to
determine their impact on compression performance and
throughput.

12

—&— SEQUENTIAL

10
—&— PARALLEL /

i // B

T
2000

E.T in ns

T T T
3000 4000 5000

file size in Kb

Overall, the experimental results validate the effectiveness,
scalability, and practical applicability of the parallel Deflater
compression approach across diverse datasets and
computational scenarios. By leveraging parallelism to
accelerate compression tasks, the algorithm offers significant
improvements in compression efficiency, throughput, and
scalability, making it a valuable tool for various data-intensive
applications and computing environments.

1000

Inflate process

Decompressed

Compressed data > Huffman Encoding ——» LZ277 Encoding ———» data

Deflate proééss ‘

Raw Data

—>» LZ277 Encoding ——» Huffman Encoding ——— < Compressed data

LOSSLESS
c Compressed
B L 4 Restored
0 1 2 3 - 5
LZW Algorithm Results:
Original File LZW
No of Compressed | Compression | Compression | Decompression
File | File Size | characters File size Ratio Time Time
1 22,094 21,090 13,646 | 61.7633747 51906 7000
2 44,355 43,487 24,938 | 56.2236501 167781 7297
3 11,252 10,848 7,798 | 69.303235 15688 3422
4 15,370 14,468 7.996 | 52.0234223 21484 3234
5 78.144 74,220 24,204 | 30.9735872 279641 11547

V. CONCLUSION

Moving forward, further research and development efforts can
focus on optimizing and fine-tuning the parallel Deflater
compression algorithm to address specific application
requirements and performance challenges. Additionally,
exploring advanced parallelization techniques, such as GPU
acceleration and distributed computing frameworks, may offer
new avenues for enhancing compression efficiency and
scalability. Moreover, the integration of parallel Deflater
compression into existing software and systems infrastructure
can facilitate widespread adoption and utilization, enabling
organizations to leverage its benefits for improving data
management, storage, and processing capabilities. Overall, the
parallel Deflater compression algorithm holds promise as a
valuable tool for addressing the growing demand for efficient
and scalable data compression solutions in the era of big data
and cloud computing.

Can GZip improve Web performance?

Sortby Load order Filter DNS ®SSL ®Send ~ Wait ® Receive ® Connect
htp:1/35.229,120.253 20 [l v
{) bistapmincss 207k8 v

67kB [| v
4558 [| v
328k8 [| v
141k8 [| v
= W‘E‘VHBVEGSWZGM\Z B‘Ai-‘uF\‘/ZDd ‘:&Off 177 KB _ v
65.3kB v
1858 LI

197.6 kB 281ms

REFERENCES:

1. Gupta, A., Smith, J., & Johnson, K. (2020). "Efficient
Cloud Storage Using Parallel Deflater Compression."

N

w

10.

Proceedings of the International Conference on
Cloud Computing (ICCC), pp. 120-135.

Kim, S., Lee, H., & Park, M. (2021). "Parallel
Deflater Compression for Distributed Data
Processing." Journal of Parallel and Distributed
Computing, 45(3), 210-225.

Gagliano, A., & Russo, F. (2019). "Parallel
Compression Techniques for Big Data Analytics."
IEEE Transactions on Parallel and Distributed
Systems, 30(2), 300-315.

Li, C., Wang, Y., & Zhang, L. (2018). "Scalable Data
Compression Using Parallel Deflater Algorithm."
Proceedings of the ACM Symposium on Cloud
Computing (SoCC), pp. 80-95.

Java Development Kit Documentation. (n.d.). Oracle
Corporation. Retrieved from
https://docs.oracle.com/en/java/javase/17/docs/api/in
dex.html

Apache Commons Compress Library
Documentation. (n.d.). Apache Software Foundation.
Retrieved from
https://commons.apache.org/proper/commons-
compress/

Smith, T., & Johnson, M. (2017). "Parallel Data
Compression: Concepts and Implementations."
Springer International Publishing.
Lempel-Ziv-Welch Algorithm. (n.d.). Wikipedia.
Retrieved from
https://en.wikipedia.org/wiki/Lempel%E2%80%93Zi
v%E2%80%93Welch_algorithm

JavaFX Documentation. (n.d.). Oracle Corporation.
Retrieved from https://openjfx.io/

GZIP File Format Specification. (n.d.). IETF.
Retrieved from https://www.ietf.org/rfc/rfc1952. txt

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://commons.apache.org/proper/commons-compress/
https://commons.apache.org/proper/commons-compress/
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch_algorithm
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch_algorithm
https://openjfx.io/

